

CODE:______________________________
__

Operating Systems
Ph.D. Qualifying Exam

Fall 2021

1. PAGING

Consider the following piece of code which multiplies two
matrices:

int a[1024][1024], b[1024][1024], c[1024][1024];

multiply()
{
 unsigned i, j, k;
 for(i = 0; i < 1024; i++)
 for(j = 0; j < 1024; j++)
 for(k = 0; k < 1024; k++)

 c[i][j] += a[i,k] * b[k,j];
}

Assume that the binary for executing this function fits in one
page, and the stack also fits in one page. Assume further that an
integer requires 4 bytes for storage. Compute the number of
TLB misses if the page size is 4096 bytes and the TLB has 8
entries (4 bytes per entries) with a replacement policy consisting
of LRU.

Solution:

1024*(2+1024*1024) = 1073743872 (+2 if text and stack are included)
The binary and the stack each fit in one page each, thus each takes one entry in the
TLB. While the function is running, it is accessing the binary page and the stack
page all the time. Therefore the two TLB entries for these two pages would reside in
the TLB all the time and the data can only take the remaining 6 TLB entries.

We assume the two entries are already in TLB when the function begins to run.
Then we need only consider those data pages.

Since an integer requires 4 bytes for storage and the page size is 4096 bytes, each
matrix requires 1024 pages. Suppose each row of a matrix is stored in one page.
Then these pages can be represented as a[0..1023], b[0..1023], c[0..1023]: Page a[0]
contains the elements a[0][0..1023], page a[1] contains the elements a[1][0..1023],
etc.

For a fixed value of i, say 0, the function loops over j and k, we have the following
reference string:

a[0], b[0], c[0], a[0], b[1], c[0], a[0], b[2], c[0]
…
a[0], b[1021], c[0], a[0], b[1], c[01022], a[0], b[1023], c[0]

1. For the reference string (1024 rows in total), a[0], c[0] will contribute two
TLB misses. Since a[0] and c[0] each will be accessed every four memory
references, the two pages will not be replaced by the LRU algorithm. For
each page in b[0..1023], it will incur one TLB miss every time it is accessed.
Therefore, the number of TLB misses for the second inner loop is
2+1024*1024 = 1048578

So the total number of TLB misses is 1024*1048578 = 1073743872 (+2 if we
count text and stack misses).

2. Memory Management

An operating system is running on a machine with 16M of
physical memory. The virtual memory is implemented as a pure
paging scheme. What is the size of a single level page table if
the the virtual address space is 32-bits and size of a page is 4K.
What will be the size of an inverted page table for this system?
Assume that each page table entry takes one byte.

Page Table size 2^32/^12 = 2^20 entries
Inverted Page Table: 2^24/2^12 = 2^12 Inverted table entries

3. Mutual Exclusion

Consider the following implementation of a counting
semaphore. Answer the following questions:

a) Define a counting semaphore
b) Being specific, when could a counting semaphore be used?
c) Does the following code correctly implement a counting
semaphore? If so, then argue why it does. If not, provide a
specific reason why it does not

void Wait (Semaphore S) {
 while (S.count <= 0) {}

 S.count = S.count - 1;
}
void Signal (Semaphore S) {
 S.count = S.count + 1;
}

A) A counting semaphore is an object provided by the OS to allow
programmers to create mutual exclusion to critical sections. The counting
semaphore deals with multiple copies of a resource

B) Using multiple printers

C) No it does not. The S.count+1 and S.count-1 can occur asynchronously

4. File Systems

Consider a file system similar to the Second Extended File
System (ext2) in which the inodes contain 16 double-indirect
addresses, each block is 8KiB, and each block address takes up
4 bytes. What is the largest file size possible using this system
(assuming that the inode contains a sufficiently large field to
record the file size itself)? What would the largest file size be if
using 16KiB blocks?

Each block can hold 8096/4 = 2048 block addresses. Each double-indirect address in
the inode then links to 20482 = 222 (about 4 million) data block addresses. So the
largest possible file has 16 * 222 blocks, or 16 * 222 * 8192 bytes = 512GiB.

5. Deadlock Avoidance

Consider a system with three processes and three resource types.
The following table gives, for each process, how many of each
resource is currently allocated to it and what its maximum total

need is for each resource type. Suppose that the number of
available (unallocated) resources for each type is (1 1 x). What
is the lowest value of x for which this is a safe state? Explain
your answer.

 Current Maximum
Process 1 2 3 1 2 3
A 1 1 1 2 1 2
B 1 1 0 3 3 3
C 1 2 1 4 3 3

x = 0 is not safe because no maximum request could be satisfied. x = 1 is not safe
because, although A's maximum request could be satisfied, after that neither B's nor
C's could be satisfied. x = 2 is safe: A's maximum request can be satisfied, then B's,
and finally C's.

6. Concurrency

What is the exact output of the following? Explain.

for (int i = 0; i < 2; i++)
 {
 int pid=fork();

 if (pid ==0) printf(“*”);

 else { printf (“**”);
 wait(NULL);;
 }
 }

Nine * .. *********

7. Scheduling

For the below Processes table, calculate the average waiting
time for the algorithms. For arrival purposes, all of the
processes arrive at the same time. Lowers process number will
be chosen first in FCFS.

First Come First Serve (FCFS)
Shortest Job First (SJF) and
Priority Scheduling

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

First Come First Serve

Process Start Stop Total
Wait(total-
burst)

P1 0 10 10 0
P2 0 11 11 10
P3 0 13 13 11
P4 0 14 14 13
P5 0 19 19 14
FCFS
Average 9.6

Shortest Job First

Process Start Stop Total
Wait(total-
burst)

P1 0 19 19 9
P2 0 1 1 0
P3 0 2 4 2
P4 0 2 2 1

P5 0 4 9 4
Shortest Job
First
Average 3.2

Priority

Process Start Stop Total
Wait(total-
burst)

P1 0 16 16 6
P2 0 1 1 0
P3 0 18 18 16
P4 0 19 19 18
P5 0 0 6 1

Priority
 8.2

8. Priority Queue

Operating Systems often implement a priority ready queue.
You are to implement Insert() into a basic ready queue
based only on the priority value. If the new process has the
same priority as the elements in the list, the new Process is
put in after all that are the same value (and smaller) .

struct PQueue{ int PID; int PRIORITY; struct PQueue
*next;};

struct Pqueue *RQ=NULL; // global Priority queue

void Insert(Struct PQueue *Process); // insert Process into the
global RQ properly.
 // Process should be
inserted in RQ using Process.PRIORITY before all process that
are strictly Larger.

Solution:

void Insert(struct PQueue *Process) {
 {
 struct PQueue *P, *C;
 P= NULL;
 C= RQ;
 while ((C!=NULL && (C->PRIORITY <= Process->
PRIORITY))
 { P = C;
 C = C->next;
 }
 Process->next = C;
 if (P==NULL) RQ=C
 else P->next = Process;
 }

